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Abstract
We derive rigorously the relativistic angular momentum conservation equation
by means of quantum electrodynamics. The novel nonrelativistic spin current
and torque in the spin–orbit coupling system, up to the order of 1/c4, are exactly
investigated using Foldy–Wouthuysen transformations. We find a perfect spin
Hall coefficient including the contribution of the spin torque dipole. A novel
spin motive force, analogous to the Lorentz force, is also obtained to help us
understand the spin Hall effect.

1. Introduction

Spintronics has become a fast developing field since it was first discovered. The aspects of the
carriers’ spin degree and the spin Hall effect [1–3] concerned with transport have been paid a
lot of attention recently. In order to describe the spin transport properly, the definition of spin
current has been discussed and various theories of spin current have been established [4, 5].
In a traditional review, the spin current was presented in terms of an anticommutator of the
velocity and the spin, (1/2)ϕ+{v, s}ϕ. However, under such a definition one problem is that
there is no conjugate spin force to link the spin current. Therefore, the Onsager relation cannot
be established [6]. Furthermore, because the spin has its own dynamics in its Hilbert space,
the current with both spin and spatial degree is not conserved due to the spin–orbit coupling.
By considering the spin torque, a source in the spin continuity equation can be achieved.
Previous investigations of the spin torque depended on the spin relaxation time [7–12]. To
our knowledge, an explicit torque beyond an approximation of spin relaxation time has not yet
been established.

In the studies of the spin Hall effect, the experiments and theories focus on the spin Hall
coefficient σSH [4, 5, 13–31]. In comparison with Ohm’s law in electronics, in response to the
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applied electric field, a spin current j kl
s is generated, j kl

s = σSHεlkm Em [4]. Recent studies
show that the spin Hall coefficient σSH not only includes the contribution of the conventional
spin current, but also the torque dipoles which are contained in semiconductor models with the
effect of disorder [6, 32]. However, those contributions from the torque dipoles have not been
clearly found yet.

Based on the above considerations, the consistency of quantum electrodynamics and
Noether’s theorem in the derivation of the exact conservation equation for the relativistic
angular momentum was suggested [33, 34]. It is found that the spin current including
a correction is different from the traditional definition. In the application the spin Hall
conductivity σSH involving the correction can be obtained. Under the requirement of the
Onsager relation the spin force is found to relate to the spin Hall coefficient, therefore, relating
the topological aspect of systems with spin–orbit coupling.

2. Spin continuity equation

Let us firstly consider the relativistic Lagrangian with Dirac fields � and �̄ coupled to an
electromagnetic field Aμ, L = LD+Lem+Lint, where LD = �̄(i h̄cγ μ∂μ−mc2)� describes the
free Dirac fields of spin 1/2, Lem = −(1/4)Fμν Fμν is the Lagrangian of the electromagnetic
field, where Fμν = ∂μ Aν −∂ν Aμ, the interaction between Dirac fields and the electromagnetic
field is given by Lint = −e�̄γ μ Aμ� , and the four-vector γ μ is represented as γ μ = (γ 0, γ )

in terms of Pauli matrices σ .
The energy–momentum tensor of gauge invariant form is found to be θμν = θ

μν
D +

θμν
em + θ

μν

int , where θ
μν

D = �̄i h̄cγ μ∂ν� − gμνLD, θμν
em = −Fμσ ∂ν Aσ − gμνLem, and

θ
μν

int = −gμνLint. Here gμν = gμν is the metric tensor with g00 = 1, gii = −1 (i = 1, 2, 3),
and gμν = 0 (μ, ν = 0, 1, 2, 3, μ �= ν). This energy–momentum tensor satisfies the
conservation law, i.e. ∂μθμν = 0. With the tensor the angular momentum tensor can be
written in the form of Mαμν = sαμν + lαμν . Here lαμν = xμθαν − xνθαμ is the orbital
angular momentum tensor and sαμν = sαμν

D + sαμν
em is spin angular momentum tensor, where

sαμν

D = (∂L/∂∂α�)I μν

D � and sαμν
em = (∂L/∂∂α Aσ )(I μν

em )σρ Aρ . Considering the notations
I μν
D = −iσμν/2 and (I μν

em )σρ = gμ
σ gν

ρ − gμ
ρ gν

σ , it is found that sαμν
D = i(h̄c/4)�̄γ α[γ μ, γ ν ]�

and sαμν
em = Aμ Fαν − Aν Fαμ. The corresponding conservation law for the total angular

momentum is ∂α Mαμν = 0.
In order to obtain the nonrelativistic form of the conservation law, the Foldy–Wouthuysen

transformation is used in the following calculations up to 1/c4. The nonrelativistic
wavefunction is written in terms of a transformation on the relativistic wavefunction � , �

′′ =
exp[is ′(α)] exp[is(α)]� , where the operators in the exponential are is(α) ≡ (β/2mc)α · π

and is ′(α) ≡ (ih̄e/4m2c3)α · E. Here E is the electric field intensity. Correspondingly the
wavefunction is written in the form as �

′′ = (ϕ′′, χ ′′)T, where ϕ′′ = [1 − s(σ )2/2β2]ϕ
and χ ′′ = [is′(σ ) − i(E − eφ)s(σ )/2mc2β − is(σ )3/3β3]ϕ. Introducing the notation η =
ih̄eσ ·E−(E−eφ)σ ·π−(σ ·π)3/6m, χ ′′ is presented as χ ′′ = (η/4m2c3)ϕ. With the help of the
formula eis(α) Ôe−is(α) = Ô +[is, Ô]+[is, [is, Ô]]/2+· · ·+[is, [is, . . . , [is, Ô] · · ·]]/n!+· · ·
and let Ô be M0i j and Mki j , the continuity equation for the nonrelativistic electronic spin can
be obtained. The nonrelatistivic form of the angular momentum conservation law reads

∂

∂ t
ρl

s + ∇k j kl
s = T l, (1)

where j kl
s = (h̄/4m)ϕ†{π k, σ l}ϕ is the traditional spin current, which represents the current of

the l component of the spin along the direction k. Here we have written the wavefunction ϕ′′
as ϕ for convenience. The spin density ρl

s is obtained as
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ρl
s = h̄

2
ϕ+σ lϕ + h̄

4m2c2
ϕ+(π lσ ·π−π2σ l)ϕ

+ h̄2e

8m2c3
ϕ+(3Bl −σ lσ · B)ϕ + ih̄

8m3c4
ϕ+[(σ × π)lη−η+(σ × π)l]ϕ, (2)

where magnetic field B is evidently written out. The first term in equation (2) is nothing but a
traditional spin density. The second term can be written as (h̄/4m2c2)ϕ+π × (π × σ)ϕ, which
indicates its generation from the spin–orbit coupling. The interaction between the intrinsic
magnetic moment and the external magnetic field is given by the third term. The last term gives
a small correction of the order of 1/c4.

Now let us analysis the right-hand side of equation (1), named the spin torque density T l .
Up to the same order of the nonrelativistic approximation, it is found that

T l = ∇k

{
ih̄

2m
ϕ+σ k(σ × π)lϕ

}
+ ih̄e

2mc
ϕ+[σ lσ · B − Bl]ϕ

− h̄e

4m2c2
ϕ+{h̄[∇(E · σ) × σ ]l + 2σ lπ · E − 2σ · π El}ϕ

+ h̄2e

4m2c2
∇k{ϕ+[σ k(σ × E)l + (σ × E)kσ l ]ϕ}

− 1

32m4c4
ϕ+(η+{σ · π, {σ · π, (π × σ)l}} + {σ · π,{σ ·π,(π× σ)l}}η)ϕ

+ h̄

64m4c4
∇k[ϕ+(η+{σ · π, {σ · π, σ kσ l}} + {σ · π, {σ · π, σ kσ l}}η)ϕ]. (3)

Besides the relativistic correction up to the order of 1/c4, the contributions from the spin–orbit
coupling and its nonrelativistic correction are presented by the first and the fourth terms. The
second term corresponds to the interaction of intrinsic magnetic moment and external magnetic
field. The effect from the couplings between the orbit and the spin to the electric field is given
in the third term.

Previous discussion of the spin Hall effect was given in the case of the absence of the
magnetic field B. In general, to extend the cases for the ferromagnet or the system under the
external magnetic field, the magnetic field remains in the following and demonstrates the effect
of magnetic field on the spin Hall effect. Considering an external magnetic field along the
direction of the spin, one state of the spin polarization is left and all spin transport processes in
the presence of both the electric field Em and the magnetic field Bl are shown in figure 1(b).
The corresponding spin motive force and the spin Hall coefficient can be obtained. It is worth
pointing out that the previous spin current does not contain the contribution of spin torque
dipole [6]. When the torque density is written in the form of a divergence of a torque dipole
T l = −∇k Pkl

T , where Pkl
T = ∫

v
T l dxk is integrable, the spin current is found

J kl
s = j kl

s + Pkl
T , (4)

which includes the traditional current and a correction of the spin torque dipole. Equation (4)
can be written as a response equation J kl

s = σscε
lkm Em in which σsc is the spin Hall coefficient.

Obviously, the spin current J kl
s is vertical to the direction of the spin sl and the electric field

Em . Em , sl , and J kl
s satisfy the right-hand rule, as shown in figure 1(a).

Now the spin continuity equation (1) can be written as

∂

∂ t
ρl

s + ∇k J kl
s = 0. (5)

It implies that the spin current has a natural conjugate spin force. Therefore, the Onsager
relation σ mk

sc = −σ km
cs can be established under the time reversal symmetry to link the spin
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Figure 1. The spin current J kl
s and the spin motive force f k via the spin s and the electric field E,

where J kl
s represents the current of the l component sl of the spin along the direction k. (a) The

spin current J kl
s and the spin motive force f k in the spin–orbit coupling system without an external

magnetic field, where Em , sl and J kl
s (or f k ) satisfy the right-hand rule; (b) the spin current and the

spin motive force in the spin–orbit coupling system under an external magnetic field B along the l
direction; (c) the spin current and the spin motive force in the two-dimensional Rashba spin–orbit
coupling system.

transport with other transport phenomena, such as the charge transport, where σ mk
sc and σ km

cs are
the spin–charge and charge–spin conductivity tensors.

3. Spin Hall coefficient and spin motive force

We consider the divergence of the spin torque dipole as a product of an electric field and a
coefficient χ lm(q), −iqk Pkl

T (q) = χ lm(q)Em(q), with q being a finite wavevector. The more
explicit form of the coefficient can be represented as follows

χ lm = − h̄

2
εlm′mqm′ σe

e
+ ih̄e

2mc
ϕ+(q)[(σ lσ · B − Bl)/Em]ϕ(q)

− h̄e

4m2c2
ϕ+(q)(ih̄qm′

σ mσ n
′
εlm′n′ + 2σ lπm)ϕ(q), (6)

where σe is the electric conductivity. The spin Hall coefficient σsc corresponding to our new
spin current J kl

s can be written as

σsc = σ 0
SH + σ T

SH, (7)

where σ 0
SH is the conventional spin Hall conductivity [4, 12], corresponding to the

traditional spin current, σ T
SH is the contribution of the spin torque dipole Pkl

T , and σ T
SH =

Re{i∂χ lm(q)/∂qk}q=0. In some semiconductors with disorder the spin Hall coefficient is
extremely different from the conventional one. We can evaluate the spin Hall coefficient
σ T

SH in the GaAs sample as follows: at room temperature, the carrier density of GaAs is
n ∼ 1017 cm−3, the mobility of carriers is μ ∼ 350 cm2 V−1 s−1, and the conventional spin
Hall coefficient is σ 0

SH ∼ 16 �−1 cm−1, σ T
SH ∼ 5.6 �−1 cm−1. For a lower carrier density

case, n ∼ 1016 cm−3, μ ∼ 400 cm2 V−1 s−1, σ 0
SH ∼ 7.3 �−1 cm−1, σ T

SH is estimated as
σ T

SH ∼ 0.64 �−1 cm−1. As a kind of correction, σ T
SH is one order smaller than the conventional

spin Hall coefficient σ 0
SH. The general spin Hall coefficient σsc should include the conventional

one σ 0
SH and the correction σ T

SH.
Now the Onsager relation and spin Hall coefficient have been found. The so-called spin

force Fs can be calculated as Fs = (Jc −σccE)/σcs, where σcc is the charge–charge conductivity
tensor, and Jc is the charge current [6]. Particularly, in [12], the spin force has the simple form
Fm

s = J k
c /σ km

cs in a two-dimensional electron gas. From the Onsager relation, σ km
cs = −σ mk

sc ,
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the charge–spin tensor σ km
cs can be obtained, and the intrinsic Hall current J k

c in the k direction
can be detected by experiments. However, the spin force cannot be interpreted as a motive
force of an electron like the Lorentz force in the Hall effect, and it has the same direction as the
electric field Em .

To interpret the spin Hall effect, we try to find a spin motive force f k which has an analogy
to the Lorentz force in the Hall effect. Here the spin motive force is vertical to the direction
of the electric field and the spin, i.e. Em , sl and f k satisfy the right-hand rule, as shown in
figure 1(a). The discussion is based on the spin torque. The torque density T l can be written in
the form T l = εlmkrm f k = χ lm Em . After calculation, we obtain f k as

f k = σ 1
f Em + σ 2

f χ lm , (8)

where the spin motive force coefficients σ 1
f and σ 2

f are expressed as

σ 1
f = 1

2 Re{εlmk∇mχ lm(r)} (9)

and

σ 2
f = 1

2 Re{εlmk∇m Em(r)}. (10)

In the case of the electric field being constant, σ 2
f is zero. Here we have obtained the evident

formula χ lm , and the electric field Em can be detected in experiments. Thus the spin motive
force f k is found. Assuming the mobility of the carriers in the GaAs sample with disorder
is μ ∼ 103 cm2 V−1s−1 and the electric field is E ∼ 10 mV μm−1, we find the order-of-
magnitude of the spin motive force f k ∼ 10−20 eV μm−1. Obviously, this is an extremely
weak quantity.

4. Application in the two-dimensional electron gas

We will discuss the properties of the spin motive force in the two-dimensional electron
gas. The Dirac Hamiltonian of a relativistic electron is H = cα · P + βmc2. Using
the Foldy–Wouthuysen transformation, the nonrelativistic limit of the Dirac Hamiltonian is
H = β(mc2 + π2/2m − π4/8m3c2) + eφ − (h̄e/2mc)βσ · B − (h̄2e/8m2c2)∇ · E −
i(h̄2e/8m2c2)σ · (∇ × E) − (h̄e/4m2c2)σ · (E × P), where φ is the electric potential [34].
In the two-dimensional electron gas, E = (0, 0, Em), σ = (σ l, σ k, σ m), P = (Pl , Pk , 0), and
B = 0, the nonrelativistic Hamiltonian can be written as H = P2/2m − λ(Pkσ l − Plσ k), this
is the Rashba Hamiltonian, where the coupling parameter λ = (h̄e/4m2c2)Em [35].

In the two-dimensional electron gas, the formula χ lm has a simple form, χ lm =
i(h̄/2e)εlm′m∇m′

σe −(h̄e/4m2c2)ϕ+(h̄∇m′
σ mσ n′

εlm′n′ +2σ lπm)ϕ. Thus the spin motive force
can be represented as f k = (εlkm h̄e/8m2c2)∇m[ϕ+(h̄∇m′

σ mσ n′
εlm′n′ + 2σ lπm)ϕ]Em . The

spin motive force f k is nonzero, and it induces the spin current, so the spin Hall effect can be
observed in experiments in the two-dimensional electron gas. In this case, f k should be vertical
to the spin sl and electric field Em , as shown in figure 1(c). In [36], the author introduced a spin
transverse force which is perpendicular to the spin current. In contrast, our spin motive force
is parallel to the spin current. So it can be used to better understand the mechanism of the spin
Hall effect.

5. Conclusion

In conclusion, we induce the spin continuity equation from the angular momentum conservation
law with spin–orbit coupling. Our results naturally include a correction to the traditional spin
current. The correction could be considered as a spin torque dipole, so there is a conjugate
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force linking the spin current, and the Onsager relation can be established. A perfect spin Hall
coefficient corresponding to the new spin current is conformed. Furthermore, the magnitude of
the spin Hall coefficient is evaluated. From the explicit spin torque, we introduce a spin motive
force, having the same direction as the spin current, to better understand the spin Hall effect.
We find a novel right-hand rule between the electric field, the spin, and spin current (or spin
motive force) in spintronics.
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